Structural Isomers

- same chemical formula with different molecular arrangement
- differ in physical properties
 - > mp, bp, solubilities, etc.

Cycloalkanes

- = saturated hydrocarbon in form of a ring
- rings of 3 or more C-atoms
- naming put "cyclo" in front

- can also be substituted
 - > single substitution no number
 - > more than 1 1st sub. has number 1

Alkenes & Alkynes

alkene = contains a C-C double bond

- general formula $C_n H_{2n}$
- more reactive than alkanes (unsaturated)
- naming ends in "ene"
- **alkyne** = contains a C-C triple bond
 - general formula C_nH_{2n-2}
 - reactive (unsaturated)
 - naming ends in "yne"

Naming:

• give double / triple bond lowest possible number

<u>Cis-Trans Isomerization</u>

• possible with double bond and groups (other than H) attached at double bond

Fig: Cis-trans isomers of 2-Pentene

- **cis** = groups on same side of double bond
- trans = groups on opposite side of double bond (transverse)

Hydrogenation & Trans Fatty Acids

- production of margarine involves hydrogenating unsaturated fats
- this adds H atoms across double bonds, turning unsaturated vegetable oils solid

• a side rxn of hydrogenation results in some of the normally cis double bonds turning into trans bonds

- trans fats behave very differently than cis fats, though they are still chemically unsaturated
 - > more like saturated fats
 - > raise "bad" cholesterol

Aromatics

 organic molecules containing one or more benzene ring (C₆H₆)

- unreactive
- distance between 2 C atoms
 - > less than single bond
 - > more than double bond
 - > somewhere between single & double bond
- electrons shared equally around ring
 - > delocalized = not associated with any
 one C atom
 - > written as **resonance structure**

Naming:

number to give smallest numbers

• if benzene is the branch = **phenyl** group

<u>Phenols</u>

Phenols are chemical compounds consisting of a hydroxyl group (—OH) bonded directly to an aromatic hydrocarbon group.

Phenols are named using the rules for aromatic compounds. With the -OH group given #1

Note: phenol is used rather than benzene.

3-chlorophenol

3-methylphenol