Structural Isomers

- same chemical formula with different molecular arrangement
- differ in physical properties $>\mathrm{mp}, \mathrm{bp}$, solubilities, etc.

$$
\text { ex. } \mathrm{C}_{5} \mathrm{H}_{12}\left(\mathrm{C}_{m} \mathrm{H}_{2 m+2}\right)
$$

 2-methylbutane pentane
2,2-dimethylpropane

Cycloalkanes
= saturated hydrocarbon in form of a ring

- rings of 3 or more C-atoms
- naming - put "cyclo" in front

cyclopentane
- can also be substituted
$>$ single substitution - no number
$>$ more than 1-1st sub. has number 1

methyl I Cyclohexane
4-chloro-1-ethyl-2-melhylCuclohexane

Alkenes \& Alkynes
alkene = contains a C-C double bond

- general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
- more reactive than alkanes (unsaturated)
- naming ends in "ene"
alkyne = contains a C-C triple bond
- general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
- reactive (unsaturated)
- naming ends in "yne"

Naming:

- give double / triple bond lowest possible number

Cis-Trans Isomerization

- possible with double bond and groups (other than H) attached at double bond

Fig: Cis-trans isomers of 2-Pentene

- cis = groups on same side of double bond - trans = groups on opposite side of double bond (transverse)

Hydrogenation \& Trans Fatty Acids

- production of margarine involves hydrogenating unsaturated fats
- this adds H atoms across double bonds, turning unsaturated vegetable oils solid

- a side rxn of hydrogenation results in some of the normally cis double bonds turning into trans bonds

- trans fats behave very differently than cis fats, though they are still chemically unsaturated
$>$ more like saturated fats
> raise "bad" cholesterol

Aromatics

- organic molecules containing one or more benzene ring $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$

or

- unreactive
- distance between 2 C atoms
$>$ less than single bond
$>$ more than double bond
$>$ somewhere between single \& double bond
- electrons shared equally around ring
> delocalized = not associated with any one C atom
> written as resonance structure

Naming:

- number to give smallest numbers

- if benzene is the branch = phenyl group

Phenols

Phenols are chemical compounds consisting of a hydroxyl group (- OH) bonded directly to an aromatic hydrocarbon group.

or

Phenols are named using the rules for aromatic compounds. With the - OH group given \#1

Note: phenol is used rather than benzene.

3-chlorophenol

3-methylphenol

