Chemistry 12

CALCULATIONS INVOLVING THE EQUILIBRIUM CONSTANT KEO)

Given the equilibrium equation below: 1.

$$A_{2(g)} + B_{2(g)} \rightleftharpoons 2AB_{(g)}$$

If, at equilibrium, the concentrations are as follows:

$$[A_2] = 3.45 \text{ M}, \qquad [B_2] = 5.67 \text{ M}$$

$$[B_2] = 5.67 \,\mathrm{M}$$

$$[AB] = 0.67 M$$

a) Write the expression for the equilibrium constant, K_{eq}

b) Find the value of the equilibrium constant, K_{eq} at the temperature that the experiment was done.

$$Keq = (0.67)^2 = [2.3 \times 10^{-2}]$$

2. Given the equilibrium equation:

$$X_{2(g)} + 3Y_{2(g)} \rightleftharpoons 2XY_{3(g)}$$

at a temperature of 50°C, it is found that when equilibrium is reached that:

$$[X_2] = 0.37 \text{ M}, \quad [Y_2] = 0.53 \text{ M} \text{ and } [XY_3] = 0.090 \text{ M}$$

a) Write the equilibrium constant expression (K_{eq})

b) Calculate the value of K_{eq} at 50°C.

$$Keq = \frac{(0.090)^2}{(0.37)(.53)^3} = \boxed{0.15}$$

3. For the reaction:

$$A_{2(g)} + B_{(g)} \rightleftharpoons 2C_{(g)}$$

it is found that by adding 1.5 moles of C to a 1.0 L container, an equilibrium is established in which 0.30 moles of B are found. (*Hint: Make a table and use it to answer the questions below.*)

a) What is [A] at equilibrium?

0.30M

b) What is [B] at equilibrium?

0,30M

c) What is [C] at equilibrium?

0.9M

d) Write the expression for the equilibrium constant, K_{eq} .

$$Keq = \frac{[C]^2}{[A_2][B_2]} = \frac{(0.9)^2}{(0.30)(0.30)} =$$

e) Calculate the **value** for the equilibrium constant at the temperature the experiment was done.

4. Considering the following equilibrium:

$$2AB_{3(g)} \rightleftharpoons A_{2(g)} + 3B_{2(g)}$$

If 0.87 moles of AB_3 are injected into a 5.0 L container at 25° C, at equilibrium the final $[A_2]$ is found to be 0.070 M.(Hint: Make a table and use it to answer the questions below.)

	$2AB_3 \rightleftharpoons A_2 + 3B_2$			[AB3]=0.87mol
I	0-174M	0	\rightarrow	5.0L
C	-0.14M	0.070M	+ 0.21M	= 0.174M
E	0.034M	0.070M	0.21M	
	to 2d	۲.		

a) Calculate the equilibrium concentration of AB₃.

0.03 M

b) Calculate the equilibrium [A₂].

0.070M

c) Calculate the equilibrium [B₂].

0.21M

5. Consider the reaction:

$$A(g) + B(g) \rightleftharpoons C(g)$$

a) In an equilibrium mixture the following concentrations were found:

[A] = 0.45M, [B] = 0.63M and [C] = 0.30M. Calculate the value of the equilibrium constant for this reaction.

b) At the same temperature, another equilibrium mixture is analyzed and it is found that [B] = 0.21 M and [C] = 0.70 M. From this and the information above, calculate the equilibrium [A].

$$[A] = [C] = 0.70$$

 $Keq[B] = (1.0582)(0.21) = 3.2M$

c) In another equilibrium mixture at the same temperature, it is found that [A] = 0.35 M and the [C] = 0.86 M. From this and the information above, calculate the *equilibrium* [B].

$$A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)}$$

$$[B] = [C] = 0.86$$

$$[A](Keq) = (.35)(1.0582) = 2.3M$$

6. Two mole of gaseous NH₃ are introduced into a 1.0 L vessel and allowed to undergo partial decomposition at high temperature according to the reaction:

$$2NH_{3(g)}$$
 \rightleftharpoons $N_{2(g)} + 3H_{2(g)}$

At equilibrium, 1.0 mole of $NH_{3(g)}$ remains. (Make a table and use it to answer the questions below:)

a) What is the equilibrium [N₂]?

0.50M

- b) What is the equilibrium $[H_2]$?
- c) Calculate the value of the equilibrium constant at the temperature of the experiment.

$$\text{Keq} = \frac{[N2][H2]^3}{[NH_3]^2} = \frac{(0.50)(1.5)^3}{(1.0)^2} = 1.7$$

7. At a high temperature, 0.50 mol of HBr was placed in a 1.0 L container and allowed to decompose according to the reaction:

$$2HBr_{(g)}$$
 \rightleftharpoons $H_{2(g)}$ + $Br_{2(g)}$

At equilibrium the [Br2] was measured to be 0.13 M. What is Keq for this reaction at this temperature? $q = [H_2][Br_2]$ $= (0.13 \times 0.13)$ $= (0.24)^2 = 0.29$

e?	2HBr = H2 + Br2			
工	0.50M	0	0	
C	-0.26M	+0.13M	+ 0.13M	
E	0,24M	D.13M	0.13M	_

When 1.0 mol of $NH_{3(g)}$ and 0.40 mol of $N_{2(g)}$ are placed in a 5.0 L vessel and allowed to 8. reach equilibrium at a certain temperature, it is found that 0.78 mol of NH3 is present. The reaction is:

	2NH _{3(g)} ₹	≥ 3H _{2(g)} +	N _{2(g)}
I	0.20M	-0-	0.080M
C	-0.044M	+.066M	+0.022M
E	0.156M	0.066 M	0.102M

a) Calculate the equilibrium concentrations of all three species.

$$[NH_3] = 0.16 M [H_2] = 0.066 M [N_2] = 0.10 M$$

b) Calculate the value of the equilibrium constant at this temperature.

$$Keq = [H2J^3[N2J] = (0.066)^3(.102) = 1.2 \times 10^{-3}$$
 $[NH3J^2] = (0.156)^2$

c) How many moles of H₂ are present at equilibrium?

many moles of
$$H_2$$
 are present at equilibrium?
mol $H_2 = \left(0.066 \, \text{mol}\right) \left(5.01\right) = 0.33 \, \text{mol} H_2$

d) How many moles of N₂ are present at equilibrium?

9. When 0.40 mol of PCl₅ is heated in a 10.0 L container, an equilibrium is established in which 0.25 mol of Cl₂ is present. (Make a table and answer the questions below. Be sure to read all questions ad before making your table!:)

	$PCl_{5(g)}$	≥ PCl _{3(g)} +	$Cl_{2(g)}$
工	0.04M	.	***
C	025M	+0,025M	+ 0,025M
E	0.015M	0.025M	.025M

a) Calculate the equilibrium concentration of each species.

$$[PCl_5] = 0.015M$$
 $[PCl_3] = 0.025M$ $[Cl_2] = 0.025M$

$$[Cl_2] = 0.025M$$

b) Calculate the value of the equilibrium constant, Keq at the temperature of the experiment.

$$Keq = [PCl_3][Cl_2] = (.025)(.025) = 0.042$$

$$[RCl_5] = 0.042$$

c) What amount (moles) of PCl₃ is present at equilibrium?

t amount (moles) of PCl₃ is present at equilibrium?

mol
$$PCl_3 = (0.025mol) (100L) = 0.25mol PCl_3$$

d) What amount (moles) of PCl₅ is present at equilibrium?

A mixture of H₂ and I₂ is allowed to react at 448°C. When equilibrium is established, the concentrations of the participants are found to be:

$$[H_2] = 0.46 \text{ M}, \quad [I_2] = 0.39 \text{ M} \quad \text{and} \quad [HI] = 3.0 \text{ M}.$$

The equation is:
$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

a) Calculate the value of K_{eq} at 448°C.

b) In another equilibrium mixture of the *same* participants at 448° C, the concentrations of I₂ and H₂ are both 0.050 M. What is the *equilibrium concentration* of HI?

$$[HI]^2 = (Keq)(H2][I_2]$$

= (50)(0,050)(0,050)
= 0.125
[HI]_{eq}= 0.35M

11. The K_{eq} for the reaction:

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

at 250°C is found to be $\underline{0.042}$. In an equilibrium mixture of these species, it is found that $[PCl_5] = 0.012$ M, and $[Cl_2] = 0.049$ M. What is the equilibrium $[PCl_3]$ at 250°C?

12. At a certain temperature the reaction:

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)}$$

has a Keq = 0.500. If a reaction mixture at equilibrium contains 0.210 M CO and 0.100 M H₂, what is the *equilibrium* [CH₃OH]?

At a certain temperature the reaction: $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)}$

has a $K_{eq} = 0.400$. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture was allowed to react. Find the equilibrium concentration of each gas.

			- 10 10 acc. 1	and of anno.
	100+40= CO2+42			
I	·OIM	601M	,OIM	.01M
C	+1	tx	-x	$-\chi$
E	1.01+x	1001+X	100-X	-01-X

$$\frac{\text{Keq.} = [CO_2][H_2]}{[CO][H_2O]}$$

$$\frac{(.01-x)^2}{(.01+x)^2}$$

$$0.003675 = 1.63246x$$
 [CO]eq = .0123M
 0.0022512 [H2O]eq

14. The reaction:

$$2XY_{(g)} \rightleftharpoons X_{2(g)} + Y_{2(g)}$$

has a $K_{eq} = 35$ at 25°C. If 3.0 moles of XY are injected into a 1.0 L container at 25°C, find the equilibrium $[X_2]$ and $[Y_2]$.

	2XY= X2 + Y			
工	3.0M	-0	0	
\overline{C}	-2x	+×	+x	
E	3.0-2x	\propto	1 ×	

$$Keq = [X_2][Y] = \frac{\chi^2}{[XY]^2} = 35$$

$$\frac{x}{3.0-2x} = 5.91607978$$

$$x = 5.91608(3-2x)$$

$$x = 17.7482 - 11.83216x$$

12.83216x=17.7482

Calculations Involving the Equilibrium Constant

 $\chi = 1.3831$ $E\chi_2 J_{eq} = E\chi_2 J_{eq}$ Page 8

15. The equilibrium constant for the reaction:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

at 448°C is **50**.

a) If 1.0 mol of H₂ is mixed with 1.0 mol of I₂ in a 0.50 L container and allowed to react at 448°C, what is the **equilibrium** [HI]?

b) How many moles of HI are formed at equilibrium? (Actual yield)

16. Given K_{eq} for the reaction:

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

is 0.042 at 250°C, what will happen if 2.50 mol of PCl₅, 0.600 mol of Cl₂ and 0.600 mol of PCl₃ are placed in a 1.00 flask at 250°C? (Will the reaction shift left, right, or not occur at all?)

Shifts left

17. Given the equilibrium equation:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

at 448°C, $K_{eq} = 50$. If 3.0 mol of HI, 2.0 mol of H₂, and 1.5 mol of I₂ are placed in a 1.0 L container at 448°C, will a reaction occur?

$$Q = \text{Keq} = \frac{[HI]^2}{[Ho][Io]} = \frac{(3.0)^2}{(3.0)(1.5)} = \frac{3}{3} \times \frac{(3.0)^2}{50}$$

If so, which way does the reaction shift?

18. Given the equilibrium equation:

$$H_{2(g)}$$
 + $I_{2(g)}$ \rightleftharpoons $2HI_{(g)}$

at 448°C, $K_{eq} = 50$. If 5.0 mol of HI, 0.7071 mol of H₂, and 0.7071 mol of I₂ are placed in a 1.0 L container at 448°C, will a reaction occur? (Round any answers off to 3 significant digits!)

$$Q = \frac{(5)^2}{(.7071)(.7071)} = 50$$

$$Q = \text{Keq}$$

$$\Rightarrow \text{No rxn}.$$

If so, which way does the reaction shift?

19. Determine the equilibrium constant for the reaction: $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ given that an equilibrium mixture is analyzed and found to contain the following concentrations: $[H_2] = 0.0075 \text{ M}$, $[I_2] = 0.000043 \text{ M}$ and [HI] = 0.0040 M

$$Heq = [HI]^2 = (0.0040)^2 = 50.$$

20. Given the equilibrium equation:

$$3A_{(g)} + B_{(g)} \rightleftharpoons 2C_{(g)}$$

If 2.50 moles of A and 0.500 moles of B are added to a 2.00 L container, an equilibrium is established in which the [C] is found to be 0.250 M.

a) Find [A] and [B] at equilibrium.

$$3A + B = 2C$$
 $1.25M | 0.25M | D$
 $-375M | -.125M | + 0.25M$
 $0.875M | 0.25M | 0.25M$
 $-0.875M | 0.25M | 0.25M$
 $-0.875M | 0.25M | 0.25M | 0.25M$

b) Calculate the value of the equilibrium constant K_{eq} .

$$Keq = \frac{[C]^2}{[A]^3[6]} = \frac{(0.25)^2}{(.875)^3(.125)} = 0.746 = 0.75$$

21. At 800°C, the equilibrium constant K_{eq} , for the reaction:

$$CO_{2(g)} + H_{2(g)} \rightleftharpoons CO_{(g)} + H_2O_{(g)}$$
 is 0.279

If 1.50 moles of CO₂ and 1.50 moles of H₂ are added to a 1.00 L container, what would the [CO] be at equilibrium?

22. Given that the equilibrium constant K_{eq} for the reaction:

$$A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)} + D_{(g)}$$
 is **0.015** at 25°C,

if 1.0 mole of each gas is added to a 1.0 L container at 25°C, which way will the equation shift in order to reach equilibrium?

$$Q = [CJ[DJ] = (1.0)(1.0)$$

$$[AJ[BJ] = (1.0)(1.0)$$

$$Q > heq \qquad Shifts left$$

$$1.0 \quad 0.015$$

23. Calculate the equilibrium constant K_{eq} for the following reaction:

$$2A_{2(g)} + 3B_{2(g)} \rightleftharpoons 2A_{2}B_{3(g)}$$

given that the partial pressure of each substance at equilibrium is as follows:

Partial Pressure of $A_2 = 20.0$ kPa, Partial Pressure of $B_2 = 30.0$ kPa, Partial Pressure of $A_2B_3 = 5.00$ kPa.

$$Meq = \frac{[P_{A2B3}]^2}{[P_{A2}]^2[P_{B2}]^3} = \frac{(5.00)^2}{(20.0)^2(30.0)^3} = 2.31 \times 10^{-6}$$

24. Consider the following equilibrium system: $A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)}$

1.0 mole of A and 2.0 moles of B are simultaneously injected into an empty 1.0 L container. At equilibrium (after 5.0 minutes), [C] is found to be 0.20 M. Make calculations and draw graphs to show how each of [A], [B] and [C] change with time over a period of 10.0 minutes. (HINT: You have to make a table first.)

TIME (minutes)

25. Given the reaction:

$$4HCl_{(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(g)} + 2Cl_{2(g)} \Delta H = -113 \text{ kJ}$$

How will the value of the equilibrium constant K_{eq} at 550°C compare with it's value at

Keg @ 550°C will be lower

Explain your answer. 1 TCauses Shift left to & heat

The following system is at equilibrium, in a closed container: 26.

$$4 \text{ mol gas}$$

 $4 \text{NH}_{3(g)} + 3 \text{O}_{2(g)} \rightleftharpoons 6 \text{H}_{2} \text{O}_{(g)} + 2 \text{N}_{2(g)} + \text{Heat}$

- a) How is the amount of N_2 in the container affected if the volume of the container is 1 in amount of N2 (side w more moles &
- b) How is the rate of the forward reaction affected if more water vapor is introduced into the container? I jinitial shift left then I find rate
- c) How is the amount of O2 in the container affected if a catalyst is added?

no change, just speeds up rxn

At a certain temperature, K_{eq} for the reaction:

$$3C_2H_2 \rightleftharpoons C_6H_6$$
 is **5.0**.

If the equilibrium concentration of C₂H₂ is 0.40 moles/L, what is the equilibrium concentration of C₆H₆?

$$Heq = \frac{[C_6H_6]}{[C_2H_2]^3}$$

$$Keq = [C_6H_6]$$
 $[C_6H_6] = Keq [C_2H_2]^3$ $= (5.0)(0.40)^3$ $= [0.32M]$