Organic Chemistry
= chemistry of CARBON compounds

- found in all living things, + coal, petroleum, etc.
- can also be synthesized
- huge number of organic compounds!
- why??
$>$ carbon has four valence electrons
$>$ can make up to 4 bonds
> forms chains, rings, branches, sheets, sphere etc.
> forms single, double, triple bonds
> ISOMERS = substances with same molecular formula but different structure ex. $\mathrm{C}_{10} \mathrm{H}_{22}$ has 75 isomers!!!!

Hydrocarbons (HC)

- contain only carbon \& hydrogen
- all other organic molecules are derivatives of HC
$>\mathrm{H}$ replaced by other atoms
- largest C-chain is called C-backbone

$$
\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}
$$

- simple straight chain / unbranched HC
- more complex - branched HC

- reactivity of HC depends on the number \& type of multiple bonds
- if all single C-C bonds
> stable
$>$ can not incorporate additional atoms = SATURATED
- HC with at least one double or triple C-C bond
> bonds can be broken and additional atoms incorporated
= UNSATURATED

Alkanes

- contain only single bonds \longrightarrow saturated
- can be straight chained or branched
- low boiling point
- b.p. \uparrow with \uparrow number of atoms
- mostly liquid and nonpolar
- simplest alkane $=\mathrm{CH} 4=$ methane
> produced during anaerobic decomposition of organic substances
- as alkanes grow/increase in length, addition of CH 2
$>\mathrm{C} 2 \mathrm{H} 6=$ ethane
$>\mathrm{C} 3 \mathrm{H} 8=$ propane
general formula $=\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
- tetrahedral structure (p.216)

Naming Hydrocarbons

- based on number of C atoms

number of C atoms	prefix	$\underline{\text { hint }}$
1	meth-	Mr
2	eth-	Einstein
3	prop-	Please
4	but-	Bring
5	pent-	Penelope
6	hex-	Home
7	hept-	Her
8	oct-	Overalls
9	non-	Need
10	dec-	Drycleaning

Rules:

1) count longest chain (parent)

- this gets ending of parent (alkanes=-ane)

Try \#2, p. 218

number of C atoms		prefix 1	hint 2
	meth-		$\mathbf{M r}$
3	eth-	Einstein	
4	prop-	Please	
5	but-	Bring	
6	pent-	Penelope	
7	hex-	Home	
8	hept-	Her	
9	oct-	Overalls	
10	non-	Need	
	dec-	Drycleaning	

Substituted hydrocarbons:

- number C-atoms in parent
- give number of each alkyl group followed
by name of alkyl group
- if more than one group, use alphabetical order
- if same group is repeated, use di, tri, etc.
- should have lowest numbers possible

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \\
1 \\
\mathrm{CH}_{3} \\
\hline
\end{gathered}
$$

Do \# 3 p. 219 \#4,5,8,9

