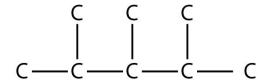
Organic Chemistry

- = chemistry of **CARBON** compounds
- found in all living things, + coal, petroleum, etc.
- can also be synthesized
- huge number of organic compounds!
- why??
 - > carbon has four valence electrons
 - > can make up to 4 bonds
 - > forms chains, rings, branches, sheets, sphere etc.
 - > forms single, double, triple bonds
 - > ISOMERS = substances with same molecular formula but different structure


ex. C₁₀H₂₂ has 75 isomers!!!!

Hydrocarbons (HC)

- contain only carbon & hydrogen
- all other organic molecules are derivatives of HC
 - > H replaced by other atoms
- largest C-chain is called C-backbone

$$c--c--c--c$$

- simple straight chain / unbranched HC
- more complex branched HC

- reactivity of HC depends on the number & type of multiple bonds
- if all single C-C bonds
 - > stable
 - > can not incorporate additional atoms
 - = SATURATED
- HC with at least one double or triple C-C bond
 - > bonds can be broken and additional atoms incorporated
 - = UNSATURATED

Alkanes

- contain only single bonds → saturated
- can be straight chained or branched
- low boiling point
- b.p. ↑ with ↑ number of atoms
- mostly liquid and nonpolar
- simplest alkane = CH4 = **methane**
 - > produced during anaerobic decomposition of organic substances
- as alkanes grow/increase in length, addition of CH2
 - > C2H6 = ethane
 - > C₃H8 = propane

general formula = C_nH_{2n+2}

tetrahedral structure (p.216)

Naming Hydrocarbons

• based on number of C atoms

number of C atoms	<u>prefix</u>	<u>hint</u>
1	meth-	\mathbf{M} r
2	eth-	E instein
3	prop-	Please
4	but-	B ring
5	pent-	P enelope
6	hex-	Home
7	hept-	Her
8	oct-	O veralls
9	non-	Need
10	dec-	D rycleaning

Rules:

- 1) count longest chain (parent)
 - this gets ending of parent (alkanes= -ane)

Try #2, p.218

number of C atoms	<u>prefix</u>	<u>hint</u>
1	meth-	$\mathbf{M}\mathbf{r}$
2	eth-	E instein
3	prop-	Please
4	but-	B ring
5	pent-	P enelope
6	hex-	Home
7	hept-	Her
8	oct-	O veralls
9	non-	Need
10	dec-	D rycleaning

Substituted hydrocarbons:

- number C-atoms in parent
- give number of each alkyl group followed by name of alkyl group
- if more than one group, use alphabetical order
- if same group is repeated, use di, tri, etc.
- should have lowest numbers possible

$$\begin{array}{ccc} \operatorname{CH_3-CH-CH_2-CH-CH_2-CH_3} \\ \operatorname{CH_3} & \operatorname{CH_3} \end{array}$$