CHEMISTRY 11 Solutions, Polarity & Bonding

Use pages 198-207 to complete the following.

A. DIPOLE-DIPOLE FORCES

- remember that van der Waals forces are weak intermolecular forces (between molecules)
- there are two main types of van der Waals forces:
- • • the difference between these two is due to the presence or absence of • a dipole is _____ London forces are ______ dipole-dipole forces are ______ • a molecule is **polar** if ______ • if a permanent dipole is absent, only ______ are present • if a permanent dipole is present, ______ exist NOTE: London forces are ALWAYS present, even in ionic structures. a dipole arises between two atoms with different ______ **Q.** Which of the following will be polar, and which will be non-polar? a) H–H b) H–O c) O–Cl d) Cl-Cl • atoms with very low electronegativities tend to form ______ ions and are said to be • a polar molecule must also be ______ (ends are different) • if a molecule is symmetrical, it is _____ <u>Do #10, p. 201</u> • relative strengths of interactions: ionic bonds _____ dipole-dipole force _____ London force

Explain:

B. HYDROGEN BONDING

Q. Which of the following substances would you expect to involve hydrogen bonds?

a) CH ₄	b) HCl	c) H ₂ O	d) H ₂ S	e) CH ₃ –NH ₂	f) CH ₃ –SH
g) CH ₃ -CH ₂ -OH		h) HF			

In summary:

- 1. Hydrogen bonds are present when molecules contain H-F, O-H, or N-H bonds.
- 2. When a permanent dipole is present, dipole-dipole forces and London forces are present.
- 3. When a permanent dipole is not present, only London forces are present
- 4. Polar molecules have at least one dipole present and are asymmetrical.
- 5. Non-polar molecules are symmetrical.

POLAR & NONPOLAR SOLVENTS

See page 204 for a list of common solvents used in chemistry. Classify each of the solvents as polar or nonpolar.

Solvent	Polar or nonpolar?	Solvent	Polar or nonpolar?	Solvent	Polar or nonpolar?
water		ethoxyethane		carbon tetrachloride	
methanol		acetone		heptane	
ethanol		acetic acid		liquid ammonia	
benzene		chloroform			

LIKE DISSOLVES LIKE!

Why? (read p. 205-206)

- Polar & ionic solvents have relatively _____ bonds holding the solid together and only ______ solvents have sufficient attraction to the solute to be able to pull the solute of of a crystal and into solution.
- Nonpolar solutes require solvents with sufficient ______ forces to remove the solid from from the crystal and into solution; polar solvents tend to have _____ London forces while non polar solvents have _____ London forces.

How to Distinguish the Most Important Bonds or Forces Holding Substances Together

IONIC BOND - the substance in an ionic crystal (made of metal and nonmetal atoms or recognizable ions) ex. NaCl(s), NH₄NO₃(s)

COVALENT BOND - the bond in question is intramolecular (bond holds to atoms together IN a molecule); ex. C-H in CH₄

The remaining types of bonds are all intermolecular (bonds **between** existing molecules)

HYDROGEN BONDS - look for HF or any molecule having OH or NH in its formula

if not present then

DIPOLE-DIPOLE FORCE - look for an asymmetric molecule

if not present then

LONDON FORCE is all that is present

Do # 23, 26 & 27 on page 208.