| Name | | Block: | Date: _ | | | |------|-------|----------------------------------|---------|------|--| | | VSEPR | Chemistry THEORY & MO | | APES | | | V | S | E | P | R | | | = | • lone pairs occupy _____ space than bonded electrons ## **Using VSEPR to Predict the Shapes of Molecules** | Electron
Groups on
central atom ¹ | Electron-Group
Shape | Bonds ² | Lone
Pairs | $\mathbf{A}\mathbf{X}_{m}\mathbf{E}_{n}^{3}$ | Molecular
Shape | Bond
angles | Polarity | Hybrid
-ization | Appearance | |--|-------------------------|--------------------|---------------|--|-----------------------|----------------|-----------------------|--------------------|------------| | 2 | Linear | 2 | 0 | AX_2 | linear | 180° | nonpolar ⁴ | sp | 180° | | 3 | Trigonal Planar | 3 | 0 | AX_3 | trigonal
planar | 120° | nonpolar ⁴ | sp^2 | 120" | | 3 | | 2 | 1 | AX_2E | bent | <120°5 | polar | sp^2 | <120° | | 4 | Tetrahedral | 4 | 0 | AX_4 | tetrahedral | 109.5° | nonpolar ⁴ | sp ³ | 109.5° | | | | 3 | 1 | AX ₃ E | trigonal
pyramidal | <109.5° | polar | sp ³ | <109.59 | | | | 2 | 2 | AX ₂ E ₂ | bent | <109.5° | polar | sp ³ | : | ¹ "Electron groups" include bonds, lone pairs, and odd (unpaired) electrons. A multiple bond (double bond or triple bond) counts as one electron group. ² A multiple bond (double bond or triple bond) counts as one bond in the VSEPR model. ³ A = central atom, X = surrounding atoms, E = lone pairs ⁴ Molecules with this shape are nonpolar when all of the atoms connected to the central atom are the same. If the atoms connected to the central atom are different from each other, the molecular polarity needs to be considered on a case-by-case basis. Since electrons in lone pairs take up more room than electrons in covalent bonds, when lone pairs are present the bond angles are "squashed" slightly compared to the basic structure without lone | Electron
Groups on
central atom ¹ | Electron-Group
Shape | Bonds ² | Lone
Pairs | $\mathbf{A}\mathbf{X}_{m}\mathbf{E}_{n}^{3}$ | Molecular
Shape | Bond
angles | Polarity | Hybrid
-ization | Appearance | |--|--|--------------------|---------------|--|-------------------------|---------------------|-----------------------|---------------------------------|------------| | | eq = equatorial ax = axial Trigonal Bipyramidal | 5 | 0 | AX_5 | trigonal
bipyramidal | 120° eq
90° ax | nonpolar ⁴ | sp ³ d | 90 | | 5 | | 4 | 1 | AX ₄ E | seesaw | <120° eq
<90° ax | polar | sp ³ d | <120 | | 3 | | 3 | 2 | AX_3E_2 | T-shaped | <90° | polar | sp ³ d | -990 | | | | 2 | 3 | AX_2E_3 | linear | 180° | nonpolar ⁴ | sp ³ d | 1807 | | | Octahedral | 6 | 0 | AX_6 | octahedral | 90° | nonpolar ⁴ | $\mathrm{sp}^{3}\mathrm{d}^{2}$ | 90" | | 6 | | 5 | 1 | AX ₅ E | square
pyramidal | <90° | polar | $\mathrm{sp}^3\mathrm{d}^2$ | 590 | | | | 4 | 2 | AX ₄ E ₂ | square
planar | 90° | nonpolar ⁴ | $\mathrm{sp}^{3}\mathrm{d}^{2}$ | 500 | 1. Draw the Lewis structure for water, H₂O. | bonds = lone pairs = | | |----------------------|-------------------| | e-group shape = | molecular shape = | | bond angle = | polarity = | 2. Draw the Lewis structure for NO_2^- . bonds = ____ lone pairs = ____ e-group shape = ____ molecular shape = ____ bond angle = ____ polarity = ____ | 3. | 3. For each of the following, draw the Lewis structure, determine the bond angles, pola molecular shape.a. carbon tetrachlorided. SO₃ | | | | | | | |----|--|--------------------|--|----|----------------|--|--| | | a. | carbon teraemonae | | u. | 503 | b. | silicon disulphide | | e. | carbon dioxide | f. NH₃ $c. \quad C_2H_2$