Unit 1: Safety in the Chemical Laboratory

• ensure that you understand all the basic safety rules to follow in the chemistry laboratory

• there will be a few safety questions on the final exam

Unit 2: Introduction to Chemistry

UNIT CONVERSIONS

- you should know kilo, centi, milli and micro
- use conversion factors
- stop off at base unit (metre, litre, gram)
- always show your work
- always include the units
- (unknown) = (initial) X (conversion factor)
- DENSITY $d = \underline{m}$

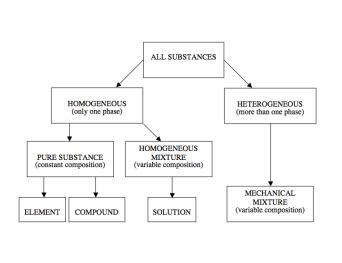
V

ACCURACY & PRECISION

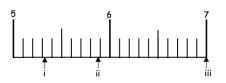
- **significant figure** = a measured or meaningful digit; includes all certain digits and one uncertain
- all non-zero numbers significant
- leading zeros not significant
- trailing zeros significant if there is a decimal
- multiplication/division round to lowest number of s.f.
- addition/subtraction round to lowest number of decimal places
- hold all numbers in your calculator and round at the end
- **accurate** = close to correct or accepted value
- **precise** = more significant digits

Unit 3: The Physical Properties & Physical Changes of Substances

DEFINITIONS


qualitative, quantitative, observation, interpretation, data, experiment, hypothesis, theory, law

PROPERTIES OF MATTER


matter, physical property, chemical property, solid, liquid, gas, aqueous, malleability, ductility, lustre, viscosity,

CLASSIFICATION OF MATTER

pure substance, mixture, homogeneous, heterogeneous, solution, solute, solvent, element, atom, molecule, ion, particle, compound

Prefix	Abbreviation	Exponent
giga	G	10 ⁹
mega	M	10 ⁶
kilo	k	10 ³
hecto	h	10 ²
deca	da	10 ¹
deci	d	10 ⁻¹
centi	с	10 ⁻² 10 ⁻³
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	p	10 ⁻¹²

Unit 4: Inorganic Nomenclature

- metals, nonmetals, semiconductors/semi-metals/metalloids
- ions, anions, cations, polyatomic ions

IONIC COMPOUNDS

- metal and nonmetal
- criss-cross combining capacities, simplify; keep polyatomic ions together
- examples: potassium oxide, calcium phosphide, tin (IV) sulphate, iron (II) phosphate
- name metal and add "ide" to end of nonmetal
- Roman numerals for metals with >1 possible charge
- examples: CaF₂, Cu₂O, Ag₂SO₄, Pb(SO₄)₂

COVALENT COMPOUNDS

- two nonmetals
- use prefixes
- examples: CO, P₂O₅, SiF₆
- examples: phosphorus trichloride, tetrasulphide dinitride, disilicon hexaiodide

PURE ELEMENTS

• diatomic elements end in "gen" including halogens

HYDRATES

- molecules that include water molecules in their crystal structure ex. CuSO₄•5H₂O
- use prefix and "hydrate" to indicate number of water molecules
- examples: CoCl₂•4H₂O, Al₂O₃•3H₂O

ACIDS

- start with "H"
- examples: HF, HNO₃, HClO₂

Unit 5: The Mole Concept

- Avogadro's Hypothesis = equal volumes of different gases, at the same temperature and pressure, contain the same number of particles
- mole = the number of carbon atoms in exactly 12 g of carbon
- molar mass = the mass of one mole of particles
- molar mass of each element given in grams on periodic table
- for molar mass of a compound, add molar masses of atoms that make up compound
- **molar volume** = volume occupied by one mole of gas at STP = 22.7 L/mol
- **STP** = standard temperature & pressure = 0° C & 101.3 kPa
- Avogadro's number = 6.02×10^{23} particles per mole

anion ending	acid ending	example
"ide"	hydro ic	HCl = hydrochloric acid
"ate"	ic	H ₂ SO ₄ = sulphuric acid
"ite"	ous	HNO ₂ = nitrous acid

CONVERSION	CONVERSION FACTOR					
MOLES ←→ NUMBER OF PARTICLES	$\frac{6.02 \times 10^{23} \text{ particles}}{1 \text{ mol}} \text{ or }$ $\frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ particles}}$					
$MOLES \longleftrightarrow MASS$	(molar mass) g 1 mol or 1 mol (molar mass)					
MOLES ←→ VOLUME (gases @ STP)	22.4 L 1 mol or 1 mol 22.4 L					
MOLECULES ←→ ATOMS	(atom count) atoms 1 mol 0 r (atom count) atoms					

Common Prefixes Use in

Chemical Nomenclature

Meaning

1

2

3

4

5

6

7

8 9

10

Prefix

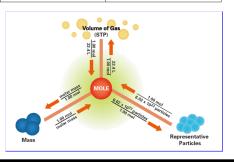
Mono-

Di-

Tri

Tetra-

Penta-


Hexa-

Hepta-

Octa-

Nona-

Deca-

PERCENTAGE COMPOSITION

- assume 1 mole of compound
- determine mass of each and take % of total

EMPIRICAL FORMULA

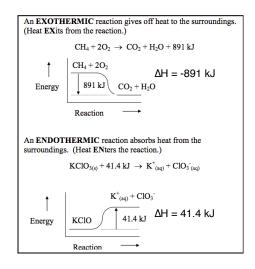
- empirical = simplest formula
- assume 100 g; determine mass of each element; find moles of each; divide by smallest number

MOLECULAR FORMULA

• divide molar mass of molecular formula by molar mass of empirical formula

MOLAR CONCENTRATION - Solutions

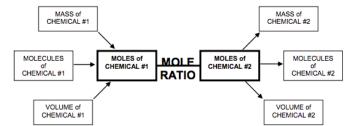
- solution vocab: solution, solute, solvent, concentration, saturated, unsaturated, solubility
- **molarity** = molar concentration = moles/L = M = [solution]
- dissociation = separating previously existing ions in an ionic solid
 - ex. NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq)
 - calculating [ions] in solution
 - write dissociation equation
 - use mole ratio


DILUTION CALCULATIONS

- mixing two solutions together, the concentration will change
- C1V1 = C2V2 where C = concentration and V = volume

Unit 6: Chemical Reactions

- signs: temperature change, change in colour, new phases formed
- open vs. closed system
- Law of Conservation of Mass
- balancing number of each atom must be the same on each side
- writing formula equations don't forget diatomic elements ('gen')


ТҮРЕ	HOW TO RECOGNIZE REACTANTS	HOW TO PREDICT PRODUCTS			
Synthesis or Combination	2 elements	combine elements into one compound			
Decomposition	1 compound	Break compound down into it elements			
Single Replacement	Element + Compound	Interchange metals (or nonmetals) present			
Double Replacement	Compound + Compound	Interchange positive ions in compounds			
Neutralization	Acid + Base Water is one remaining ions form a				
Combustion of Hydrocarbon	Compound starting with "C" + O ₂	CO ₂ + H ₂ O (if H present) + SO ₂ (if S present)			

• energy change can be determined using mole ratios

Unit 7: Stoichiometry

- **stoichiometry** = the relationship between the amounts of reactants used in a chemical reaction and the amounts of products produced by the reaction
- coefficients in a balanced equation give us the MOLE RATIO

• Step 1 - change to moles; Step 2 - mole ratio; Step 3 - change to desired units

TITRATIONS

- a measured amount of a solution is reacted with a known volume of another solution of unknown concentration
- **equivalence point** = the point in a titration where the ratio of the moles of each species involved exactly equals the a ratio of the coefficients of the species in the balanced equation
- same as any stoichiometry question

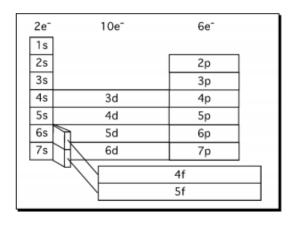
STOICHIOMETRY OF EXCESS QUANTITIES

- **limiting reactant** = reactant that sets a limit on the amount of product that can be formed (completely used up in a chemical reaction)
- excess reactant = reactant that is not completely used up in a chemical reaction
- ALWAYS use limiting reactant to determine other amounts of products formed or reactants used

PERCENT YIELD

- · amount of product actually obtained as a percentage of the expected amount
- theoretical yield comes from stoichiometry calculation

Percent yield $= \frac{\text{actual yield}}{\text{theoretical yield}} \times 100 \text{ percent}$


Unit 8: Atoms & the Periodic Table

ATOMIC THEORY

- John Dalton solid sphere; atoms of different elements have different properties
- J.J. Thomson plum pudding model; ball of + charge with random charges throughout
- Sir E. Rutherford small + nucleus surrounded by cloud of charged electrons
- Niels **Bohr** electrons in fixed energy orbits
- quantum mechanics e- location based on mathematical calculation of probability
- orbital = actual region of space occupied by an electron in a particular energy level
- electron configuration = describes how electrons arranged in an atom

ATOMIC NUMBER & ATOMIC MASS

- **atomic number** = number of protons in the nucleus
- **mass number** = number of protons + neutrons
- **isotopes** = atoms with same atomic number but different masses (different number of neutrons)
- atomic mass = weighted average of isotopes of an element
- protons = atomic number
- neutrons = mass number protons
- electrons = protons ionic charge

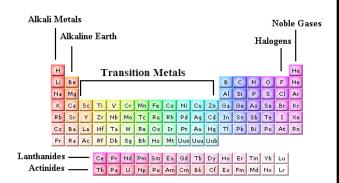
THE PERIODIC TABLE

- created by Dmitri Mendeleev in 1869
- organized by atomic number
- **metals**: reflective, opaque, good conductors, ductile, malleable, solid at room T
- **nonmetals**: gases, liquids or brittle solids at room T, poor conductors,
- **semiconductor**: nonmetal having electrical conductivity which increases with T

PERIODIC TRENDS

- **metallic character** increases right to left and top to bottom
- atomic radius decreases left to right; increases top to bottom
- **ionization energy** = energy to remove an electron from outermost shell of neutral atom; increases left to right, decreases top to bottom
- **electronegativity** = tendency of an atom to attract electrons from neighbouring atom; increases left to right, decreases top to bottom

BONDING


- **ionic bond** electron transfer; attraction between positive and negative ions; between metal and nonmetal; very strong; high melting points
- covalent bond electrons shared equally; between nonmetals
- octet rule = atoms in in groups 14-17 form covalent bonds to have 8 electrons in outer shells
- **double bond** = sharing 4 electrons
- **triple bond** = sharing 6 electrons
- polar covalent bond = electrons shared unequally; one end slightly more negative (δ-) and one end slightly more positive (δ+)
- valence electron = electrons in outer s and p orbitals
- valence of an atom = number of unpaired electrons

LEWIS STRUCTURES

• electrons in outermost s and p orbitals shown with dots

- intramolecular forces covalent bonds between atoms in a molecule; STRONG!
- intermolecular forces = van der Waals forces hold molecules next to other molecules; WEAK!
- dipole-dipole forces due to dipole on polar molecules; ex. hydrogen bond
- London forces weakest intermolecular force; due to momentary dipoles
- **dipole** = partial separation of charge
- a molecule is **polar** if is partial + charge at one end and partial charge at other end
- a molecule that is not polar is **nonpolar**
- polar molecules must be asymmetrical (uneven)
- a molecule that is **symmetrical** is **nonpolar**
- like dissolves like
 - polar/ionic solutes dissolve in polar solvents
 - nonpolar solutes dissolve in nonpolar solvents

• VSEPR = Valence Shell Electron Pair Repulsion -	Electron Groups on central atom ¹	Electron-Group Shape	Bonds ²	Lone Pairs	$AX_m E_n^3$	Molecular Shape	Bond angles	Polarity	Hybrid -ization	Appearance
predicts molecular geometry by examining bonding and non-bonding electron pairs of electrons on a molecule	2	Linear	2	0	AX ₂	linear	180°	nonpolar ⁴	sp	
	3	1	3	0	AX ₃	trigonal planar	120°	nonpolar ⁴	sp^2	
		Trigonal Planar	2	1	AX ₂ E	bent	<120° ⁵	polar	sp ²	
	4	Tetrahedral	4	0	AX4	tetrahedral	109.5°	nonpolar ⁴	sp ³	
			3	1	AX ₃ E	trigonal pyramidal	<109.5°	polar	sp ³	
			2	2	AX ₂ E ₂	bent	<109.5°	polar	sp ³	
	5	eq = equatorial ar = aid ar = aid Bipyramidal	5	0	AX ₅	trigonal bipyramidal	120° eq 90° ax	nonpolar ⁴	sp³d	
			4	1	AX_4E	seesaw	<120° eq <90° ax	polar	sp³d	
			3	2	AX_3E_2	T-shaped	<90°	polar	sp³d	
			2	3	AX_2E_3	linear	180°	nonpolar ⁴	sp ³ d	100°
	6		6	0	AX ₆	octahedral	90°	nonpolar ⁴	sp^3d^2	
			5	1	AX₅E	square pyramidal	<90°	polar	sp^3d^2	
		Octahedral	4	2	AX ₄ E ₂	square planar	90°	nonpolar ⁴	sp^3d^2	

Unit 9: Organic Chemistry

- chemistry of carbon compounds
- hydrocarbon = compound containing only H and C
- each carbon forms four bonds
- **structural isomers** = compounds which have the same molecular formula but a different arrangement of atoms
- **saturated** = contains maximum number of H-atoms
- **unsaturated** = contain some double/triple bonds
- **cis-trans isomerization** = arrangement around double bond
- **'cis' isomer** = 2 groups on same side of double bond
- 'trans' isomer = 2 groups on opposed sides of double bond
- **resonance** structure = differ in placement of double bonds
- **aromatic** molecule = contains one or more benzene rings

NAME	ENDING	FUNCTIONAL GROUP	NAME	ENDING	FUNCTIONAL GROUP
alkene	-ene	$\mathbf{C} = \mathbf{C}$	ether	-oxy	-0
alkyne	-yne	$\mathbf{C} \equiv \mathbf{C}$	amine	amino	-NH ₂
halide		-F, -Cl, -Br, -I	amide	-amide	-CONH ₂
alcohol	–ol	—ОН	carboxyllic acid	-oic acid	—СООН
aldehyde	-al	—СНО	ester	-oate	COO
ketone	-one	—co—	aromatic ring	phenyl benzene	\bigcirc -