<u>Chemistry 11 – Course Review</u>

Introduction to Chemistry

1. $0.0006 \text{ mm} = ? \mu \text{m}$

2. 0.054 mL = ? nL

3. $3.5 \,\mu g/L = ? \,mg/mL$

Answer

4. The density of iron is 7860 g/L. Calculate the mass of a 3.2 mL sample of iron.

Answer _____

5. Manganese has a density of 7.20 g/mL. Calculate the volume occupied by a 4.0 kg piece of manganese.

Answer _____

Answer _____

6. A 0.0460 L piece of copper has a mass of 410.32 g. Calculate the density of copper in g/mL.

				Answer		
7.	Giv	Give the number of significant digits in each of the following. Assume they are all measurements.				
	a)	0.0023	d)	3.2 x 10 ⁻⁴		
	b)	3953 000	e)	50020.000		
	c)	1.0200 x 10 ⁵	f)	3450		
8.		rform the following calculations and ro gits as justified by the data. Assume all		the answers off to the correct number of significant abers are measurements.		
	a)	2.1500 x 0.31	f)	8.90 x $10^3 \div 4.400$ x 10^{-6}		
	b)	0.05 + 394.7322	g)	$83.00 \div 1.2300 \ge 10^2$		
	c)	$4.905 \ge 10^6 \div 4 \ge 10^{-2} \dots$	h)	98.0076 - 2.195		
	d)	(3.33 x 9.52) + 13.983	i)	0.00000200 x 245.912		
	e)	3.813 + 98.98 + 2.669	j)	5.802 ÷ 6.21 + 2.41 ÷ 9.2565		
9.	Ro	ound the following numbers to 2 signifi	cant	digits. (4 marks)		
	a)	2 000 000 000	c)	3.88945 x 10 ²⁸		
	b)	106 000	d)	0.000 000 7895		

Properties of Matter

1. Define: Observation, Interpretation, Qualitative, Quantitative, Data, Experiment, Hypothesis, Theory, Laws, Matter, Chemistry, Physical and Chemical Properties, Malleability, Ductility, Lustre, Viscosity and Diffusion.

2. Classification of Matter: Draw a diagram showing the relationship between the following words.. Make sure you can define each classification. (element, atom, molecule, ion, particle, pure substance, mixture, solution, solvent, solute, aqueous)

4. Define a physical change –

Give some examples of physical changes.

5. Define a chemical change –

Give some examples of chemical changes.

Names and Formulas for Compounds

1.	**11	te the contect formula for the following compounds.	
	a)	ammonium chlorate	
	b)	copper (II) sulphite	
	c)	zinc carbonate tetrahydrate	
	d)	nitric acid	
	e)	phosphorus pentaiodide	
	f)	iron (III) thiocyanate	
	g)	sulphuric acid	
	h)	dinitrogen tetrafluoride	
2.	Wri	te the correct names for the following compounds:	
	a)	Mn(SO ₄) ₂	
	b)	PbCrO ₄ ·6H ₂ O	
	c)	As ₂ O ₃	
	d)	CH ₃ COOHa	cid
	e)	Ni ₂ (C ₂ O ₄) ₃	
	f)	NF3	
	g)	(NH ₄) ₂ HPO ₄	
	h)	Ba(OH) ₂ ·10H ₂ O	

The Mole Concept

- 1. Make the following conversions, clearly showing your steps. Include proper units in all of your work and in your answer.
 - a) 133.44 grams of PCl₅ = ? moles

b)	0.00256 moles of $Li_2Cr_2O_7 = ?$ grams	Answer
c)	170.24 L of NO ₂ at STP = ? moles	Answer
d)	570.625 g of PCl ₃ gas = ? L (STP)	Answer
e)	1030.4 mL of C ₂ H ₆ gas at STP = ? g	Answer

f) 5.00 kg of nitrogen gas = ? L (STP)

Answer

g) $0.5696 \text{ kg of } CH_{4(g)} = ? \text{ mL (STP)}$

Answer_____

 The density of liquid ethanol (C₂H₅OH) is 0.790 g/mL. Calculate the number of molecules in a 35.0 mL sample of liquid ethanol. (NOTE: You CAN'T use 22.4 L/mol since this is NOT a gas at STP!)

Answer_____

3. A 100.0 mL sample of liquid mercury contains 6.78 moles. Calculate the density of liquid mercury from this data.

Answer _____

4. Calculate the density of $PCl_{3(g)}$ at STP.

- 5. a) The density of a gas at STP is 4.955 g/L. Calculate the molar mass of this gas.
 - b) The gas is an oxide of selenium. Determine the molecular formula.

Answer _____

6. Find the percent composition (% by mass of each element) in the following compound: Sr₃(PO₄)₂. Show your work.

Answer ____%Sr, ____%P, ____%O

- 7. A compound was analyzed and the following results were obtained: Molar mass: 270.4 g/mol Mass of sample: 162.24 g Mass of potassium: 46.92 g Mass of sulphur: 38.52 g Mass of oxygen: the remainder of the sample is oxygen
 - a) Determine the mass of oxygen in the sample.

Answer _____

b) Determine the empirical formula for this compound.

Answer: Empirical Formula:

c) Determine the molecular formula for this compound.

Answer: Molecular Formula:

8. 123.11 g of zinc nitrate, Zn(NO₃)₂ are dissolved in enough water to form 650.0 mL of solution. Calculate the [Zn(NO₃)₂]) Include proper units in your work and in your answers.

Answer

9. Calculate the mass of potassium sulphite (K₂SO₃) needed to make 800.0 mL of a 0.200 M solution of K₂SO₃. Include proper units in your work and in your answers.

Answer _____

10. What volume of 2.50 M Li₂CO₃ would need to be evaporated in order to obtain 47.232 g of solid Li₂CO₃? Include proper units in your work and in your answers.

Answer _____

11. 150.0 mL of water are added to 400.0 mL of 0.45 M HNO₃ . Calculate the final [HNO₃]. Include proper units in your work and in your answers.

12. What volume of water needs to be added to 150.0 mL of 4.00 M H₂SO₄ in order to bring the concentration down to 2.50 M? Include proper units in your work and in your answers.

Answer_____

13. Give directions on how to make 5.00 L of 0.020 M Ca(ClO)₂ using solid Ca(ClO)₂ and water. Include proper units in your work and in your answers.

Directions:

Chemical Reactions

1. Balance the following equations

- 2. Write a balanced chemical equation for each of the following, and classify each as synthesis, decomposition, single replacement, double replacement, neutralization or combustion.
 - a) potassium sulphate is mixed with cobalt (III) nitrate
 - b) liquid propanol (C₃H₇OH) is burned in air
 - c) ammonium nitrate is decomposed into it's elements
 - d) a piece of zinc is placed in a test-tube containing a solution of silver nitrate
 - e) bromine reacts with sodium iodide
 - f) bromine reacts with aluminum
 - g) rubidium reacts with chlorine gas
 - h) hydrochloric acid reacts with strontium hydroxide
- 3. State whether each of the following are *exothermic* or *endothermic*.

$HCl + 432 \text{ kJ} \longrightarrow H + Cl$	Answer
$C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12CO_2 + 11H_2O$	$\Delta H = -5638 \text{ kJ}$ Answer
$H_2O_{(s)} \longrightarrow H_2O_{(l)}$	Answer
$\begin{array}{c} \begin{array}{c} A + B \\ \hline \\ B \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Answer
$CD \longrightarrow C + D \qquad \Delta H = 65.7 \text{ kJ}$	Answer
$E + F + 437 \text{ kJ} \longrightarrow G + H$	Answer

Stoichiometry

1. Given the following balanced equation, answer the questions following it:

 $2NF_{3(g)} \ + \ 3H_{2(g)} \ \longrightarrow \ N_{2(g)} \ + \ 6HF_{(g)}$

a) If 5.5 moles of H₂ are reacted, how many moles of NF₃ will be consumed?

Answer

b) In order to produce 0.47 moles of HF, how many moles of NF₃ would be consumed?

Answer

c) If you needed to produce 180.6 g of N_2 , how many moles of H_2 would you need to start with?

Answer _____

d) If you completely react 17.04 g of NF₃ , what mass of HF will be produced?

2. Given the following balanced equation, answer the questions following it:

 $HBrO_3 + 5 HBr \rightarrow 3 H_2O_{(1)} + 3 Br_{2(g)}$

a) If 3.56 moles of HBr are reacted, how many Litres of Br₂ will be formed at STP?

Answer _____

b) In order to produce 3.311×10^{24} molecules of Br₂, what mass of HBr is needed?

Answer _____

3. Given the following balanced chemical equation, answer the question below it.

 $MgCO_{3(s)} + 2HCl_{(aq)} \rightarrow CO_{2(g)} + H_2O_{(l)} + MgCl_{2(aq)}$

a) What mass of MgCO₃ will react completely with 15.0 mL of 1.5 M HCl?

Answer

b) Calculate the volume of 2.0 M HCl which would be needed to react completely with 37.935 grams of magnesium carbonate.

4. Given the following balanced equation, answer the questions below it.

 $Ba(OH)_{2(aq)} + 2 HNO_{3(aq)} \rightarrow 2 H_2O_{(l)} + Ba(NO_3)_2$

a) In a titration, 18.20 mL of 0.300 M Ba(OH)₂ is required to react completely with a 25.0 mL sample of a solution of HNO₃. Find the [HNO₃].

Answer _____

b) In a titration, 11.06 mL of 0.200 M HNO₃ is required to react completely with a sample of 0.250M Ba(OH)₂. Find the volume of the Ba(OH)₂ sample.

Answer _____

5. Given the following balanced equation, answer the questions below it.

 $3 \operatorname{Cu}_{(s)} + 8\operatorname{HNO}_{3(l)} \longrightarrow 3 \operatorname{Cu}(\operatorname{NO}_3)_{2(aq)} + 2\operatorname{NO}_{(g)} + 4 \operatorname{H}_2O_{(l)}$

a) If 317.5 grams of Cu are placed into 756.0 grams of HNO₃, determine which reactant is in excess.

Answer _____

b) If the reaction in (a) is carried out, what mass of NO will be formed?

Answer

6. Given the balanced equation: $2BN + 3F_2 \rightarrow 2BF_3 + N_2$

When 161.2 grams of BN are added to an excess of F_2 , a reaction occurs in which 326.118 grams of BF₃ are formed.

a) Calculate the *theoretical* yield of BF₃ in grams.

Answer_____

b) Calculate the *percentage* yield of BF₃.

Answer

7. When reacting NH₃ with O₂ according to the reaction:

 $4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$

Using 163.2 grams of NH₃ with an excess of O₂ produces a 67% yield of NO.

a) Calculate the *theoretical yield* of NO in grams.

Answer_____

b) Calculate the *actual yield* of NO in grams.

Atoms, Periodic Table and Bonding

1.	. The Greek who developed the idea of atoms was				
2.	Consider the following ideas: Compounds are made up of molecules which are combinations of atoms All atoms of an element are the same Atoms of different elements are different Atoms are indivisible particles 				
	Who came up with these ideas? He called the ideas, the				
	Theory.				
3.	measured the charge/mass ratio of an electron and came up with the so-called "plum pudding" model of the atom.				
4.	devised the Scattering Experiment, which showed that all atoms had a small dense				
5.	Bohr came up with an atomic model to explain the spectrum of				
	He said that the atom has certain levels which are allowed. These levels corresponded to in which electrons move. If an electron absorbs a certain photon of energy, it will jump to a level. It will release this energy (in the form of) when it jumps back to a level. What were two limitations of Bohr's atomic model?				

6. Give the number of protons, neutrons and electrons in the following:

Isotope	Protons	Neutrons	Electrons	
Isotope ¹⁹⁴ Ir ³⁺				
$^{202}\text{Hg}^{2+}$				
¹²⁵ Te ²⁻				
²⁶³ Sg				
² H ⁺				

7. Give the nuclear notation of the following:

Isotope	Protons	Neutrons	Electrons
	105	157	103
	51	72	48
	33	42	36
	54	79	54
	94	150	91

8. Element "X" is composed of the following naturally occurring isotopes:

Isotope	% Abundance	
⁷⁹ X	50.69	
⁸¹ X	49.31	

Calculate the average atomic mass of element "X" to 3 decimal places.

Element "X" is actually the real element ______.

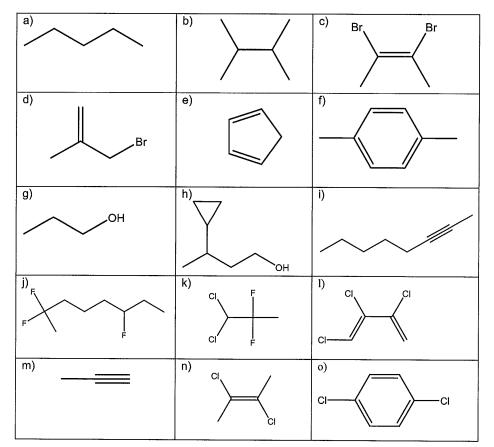
- 9. Regions in space occupied by electrons are called _____
- 10. The principal quantum number is given the letter _____ and refers to the ______ level.
- Write the ground state electron configurations (eg. 1s² 2s² 2p⁶) for the following atoms or ions. You may use the core notation.
 - a) P
 - b) Mo
 - c) Se

- d) Rb
- e) Cl-
- f) Al³⁺
- g) K⁺
- h) S²⁻
- 12. In order to become stable,

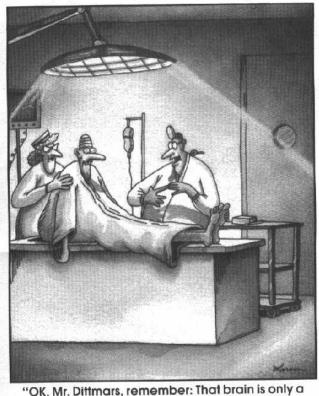
	an atom of Sr will electrons and become the ion
	an atom of As will electrons and become the ion
	an atom of Al will electrons and become the ion
	an atom of Se will electrons and become the ion
	an atom of N will electrons and become the ion
	an atom of I will electrons and become the ion
	an atom of Cs will electrons and become the ion
	an atom of Te will electrons and become the ion
13.	Circle the metalloid: Be Rb Os Ge Pb Al
14.	Circle the most reactive element in the following: Na Mg Si Al Ar
15.	Circle the most reactive element in the following: Na K Rb Cs Li
16.	Circle the most reactive element in the following: Cl Br I At Ne
17.	Circle the element with the largest atomic radius of these: Na Mg Si Al Ar
18.	Circle the element with the largest atomic radius of these: N P As Sb Bi
19.	Circle the element with the largest ionization energy of these: K Ca Ga As Kr
20.	Circle the element with the largest ionization energy of these: C Si Ge Sn Pb

- 21. What is meant by ionization energy?
- 24. Circle the element with the highest electronegativity of these: Mg Sr Ba Ra
- 25. Circle the element with the highest electronegativity of these: Mg Si S Cl
- 26. Circle the element with the highest electronegativity of these: F Cl Br I
- 27. What is meant by electronegativity?
- 28. Circle the most metallic element of these: Be Mg Ca Sr Ba
- 29. Circle the most metallic element of these: B Al Ga In Tl
- 30. Circle the most metallic element of these: Ga Ge Se Br Kr
- 31. In an ionic bond, electrons are
 - a. shared equally by two atoms
 - b. shared unequally by two atoms
 - c. transferred from a metal to a non-metal
 - d. transferred from a non-metal to a metal
 - e. closer to one end of a molecule, forming a temporary dipole Answer _____

32. In a covalent bond, electrons are


- f. shared equally by two atoms
- g. shared unequally by two atoms
- h. transferred from a metal to a non-metal
- i. transferred from a non-metal to a metal
- j. closer to one end of a molecule, forming a temporary dipole Answer _____
- 33. In a polar covalent bond, electrons are
 - k. shared equally by two atoms
 - 1. shared unequally by two atoms
 - m. transferred from a metal to a non-metal
 - n. transferred from a non-metal to a metal
 - o. closer to one end of a molecule, forming a temporary dipole
- 34. In London forces, electrons are
 - p. shared equally by two atoms
 - q. shared unequally by two atoms
 - r. transferred from a metal to a non-metal
 - s. transferred from a non-metal to a metal
 - t. closer to one end of a molecule, forming a temporary dipole Answer _____

Answer


- 35. What evidence do we have that ionic bonds are very strong?
- 36.Write electron-dot diagrams for the following:
MgCl2 (ionic)PBr3(covalent)SeF2(covalent)CH3CH2I(covalent)
- 37. Predict the shape of $MgCl_2$ _____, PBr_3 _____ & SeF_2 ____

Organic Chemistry

- 1. List the 10 straight chain alkanes by name.
- 2. Draw:
 - a. 1,3,3-trifluoro-2-pentanol
 - b. trans-2-hexene
 - c. 3,4,5,6-tetraethyl-nonane
 - d. 2-octyne
 - e. 3,5-diethyl-4-methyl-heptane
 - f. cyclooctene
 - g. 2-bromo-3-heptyne
 - h. 3-chloro-1-cyclobutanol
 - i. 1-ethyl-3-propyl-benzene
 - j. 1,3-cyclohexadiene
 - k. 2,2,3,3-tetrabromo-pentane
 - I. cis-3-nonene
- 3. Draw and name all 9 isomers of C5H10
- 4. Name:

Remember...

"OK, Mr. Dittmars, remember: That brain is only a temporary, so don't think too hard with it."

Lab Safety Questions are also Fair game for the Final!!

Study Hard!

Solutions

Introduction to Chemistry

1. 0.6µm 2. 5.4 x 10⁴nL 10 3. 3.5 x 10⁻⁶ mg/mL 4. 25 g 5. 560 mL 6. 8.92 g/mL 7. a. 2 b. 4 c.5 d. 2 e. 8 f. 3 8. a. 0.67 b. 394.78 c. 1 x 10⁸ d. 45.7 e. 105.46 f. 2.02 x 10⁹ g. 0.6748 h. 95.813 i. 4.92 x 10⁻⁴ j. 1.195 **9.** a. 2.0 x 10⁹ b. 1.1 x 10⁵ c. 3.9 x 10²⁸ d. 7.9 x 10⁻⁷ **10.** a. 1.9 g/mL b. 0.0 g c. Mass = 1.9 g/mL \cdot volume d. 285 g e. 126 mL f. D = slope = 1.9 g/mL

Properties of Matter

1. See textbook or notes. **2**. See textbook or notes. **3**. a. Components have different melting points. Increase in temperature until only one boils. Vapour condensed to liquid. Other substances stay in the flask. b. Small amounts of ink, pigments, etc. c. filtration. d. immiscible, separatory e. Spins quickly. Dense materials forced outward to the bottom of the test tube. 4. No new substance formed. Ex. melting ice, ripping paper, holding clay. 5. New chemical substances formed. Eg: Burning, photosynthesis, neutralization, etc. 6. a. Increase in temperature of the solid. b. Melting the solid. c. Warm up the liquid of substance "X". d. Boil the liquid. e. 43°C f. 77°C g. 3 h. gaseous i. All the E is being used for melting the solid. No E is available to warm the substance until melting is complete.

Names and Formulas for Compounds

1. a. NH_4ClO_3 b. $CuSO_3$ c. $ZnCO_3 \cdot 4H_2O$ d. HNO_3 e. PI_5 f. $Fe(SCN)_3$ g. H_2SO_4 h. N_2F_4 **2.** a.Manganese (IV) sulphate b. Lead (II) chromate hexahydrate c. Diarsenic trioxide d. Acetic acid e.Nickel (III) oxalate f. Nitrogen trifluoride g. Ammonium monohydrogen phosphateh. Bariumhydroxide decahydrateh. Barium

The Mole Concept

1. a. 0.64 mol b. 0.588 g c. 7.6 mol d. 92.96 L e. 1.38 g f. 4.00 x 10^3 L g. 7.97 x 10^5 mL**2.** 3.62 x 10^{23} molecules **3.** 13.6 g/mL **4.** 6.14 g/L **5.** a. 111 g/mol b. SeO₂ **6.** 58.04% Sr,**2.** 3.62 x13.69% P, 28.27% 0 **7.** a. 76.8 g b. KSO₄ c. K₂S₂O₈ **8.** [Zn(NO₃)₂] =1.000 M **9.** 25.328 g**10.** 0.256 L **11.** [HNO₃] = 0.33 M **12.** 240.0 mL **13.** Add 14.31 g of Ca(ClO) to less than 5.00 L of water and dissolve. Add more water to a final volume of 5.00 L.

Chemical Reactions

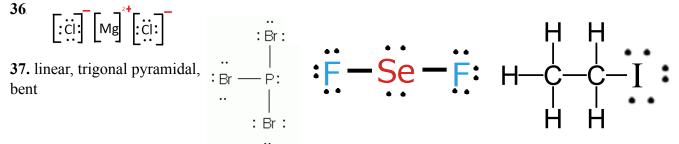
- 1. a. 4, 5, 4, 6 b. 3, 2, 1, 6 c. 2, 43, 28, 30 d. 2, 6, 2, 3 e. 1, 6, 4 f. 14, 2, 2, 7, 3 g. 2, 3, 6 h. 1, 1, 1, 4 i. 2, 21, 14, 16 j. 1, 1, 5
- **2.** a. $3 \text{ K}_2 \text{SO}_4 + 2 \text{ Co}(\text{NO}_3)_3 \rightarrow \text{Co}_2(\text{SO}_4)_3 + 6 \text{ KNO}_3 \text{ (D.R.)}$
 - b. 2 C₃H₇OH + 9 O₂ \rightarrow 6 CO₂ + 8 H₂O (Comb.)
 - c. 2 NH₄NO₃ \rightarrow 2 N₂ + 4 H₂ + 3 O₂ (Dec.) d. Zn + 2 AgNO₃ \rightarrow 2 Ag + Zn(NO₃)₂ (S.R.)
 - e. $Br_2 + 2 \text{ NaI} \rightarrow I_2 + 2 \text{ NaBr} (S.R.) \text{ f. } 3 \text{ Br}_2 + 2 \text{ Al} \rightarrow 2 \text{ AlBr}_3 (Syn.)$
 - g. 2 Rb + Cl₂ \rightarrow 2 RbCl (Syn.) h. 2 HCl + Sr(OH)₂ \rightarrow 2 H₂O + SrCl₂ (Neut.)

3. a. endo b. exo c. endo d. exo e. endo f. endo 4. a. 9396.67 kJ b. 2870.25 kJ c. 3758.67 kJ

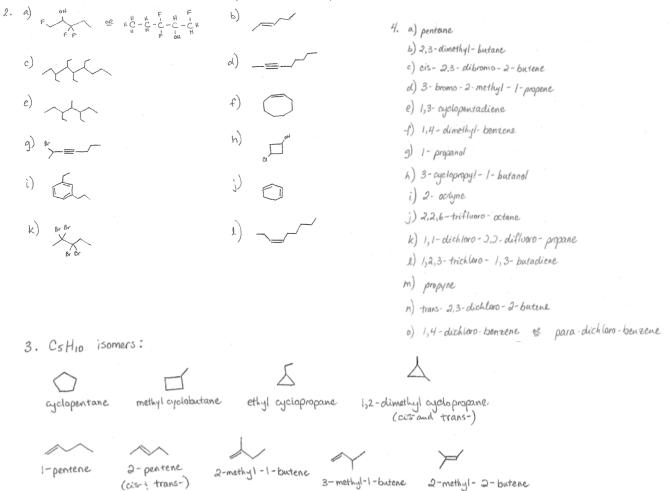
Stoichiometry

6.

1. a. $3.67 \mod b. 0.157 \mod c. 19.35 \mod d. 14.4 \ g \ HF \ 2.$ a. $47.85 \ L \ Br_2 \ b. 741.6 \ g \ HBr$ **3.** a. $0.948 \ g \ b. 0.450 \ L \ 4.$ a. $[HNO_3] = 0.437 \ M \ b. 0.004424 \ L \ 5.$ a. Cu in excess. b. $90.0 \ g$ **6.** a. $440.7 \ g$ BF₃ b. $74.0\% \ 7.$ a. $288.0 \ g \ NO \ b. 192.96 \ g$


Atoms, Periodic Table and Bonding

1. Democritus 2. John Dalton; Atomic 3. J.J. Thompson 4. Ernest Rutherford; nucleus5. a.Hydrogen; energy; orbitals (shells); higher; light (photons); lower b. Only worked for hydrogen; noevidence that e- travel in orbits.


Isotope	Protons	Neutrons	Electrons	
194 Ir ³⁺	77	117	74	
$^{202}\text{Hg}^{2+}$	80	122	78	
¹²⁵ Te ²⁻	52	73	54	

²⁶³ Sg	106	157	106
² H ⁺	1	1	0

7. a. ${}^{262}_{105}$ Db²⁺ ${}^{23}_{51}$ Sb³⁺ c. ${}^{75}_{33}$ As³⁻ d. ${}^{133}_{54}$ Xe e. ${}^{244}_{94}$ Pu³⁺ energy **11.** a. [Ne] 3s² 3p³ b. [Kr] 5s² 4d⁴ c. [Ar] 4s² 3d¹⁰ 4p⁴ d. [Kr] 5s¹ e. [Ne] 3s² 3p⁶ f. [He] 2s² 2p⁶ g. [Ne] 3s² 3p⁶ h. [Ne] 3s² 3p⁶ **12.** lose, 2, Sr²⁺; gain, 3, As³⁻; lose, 3, Al³⁺; gain, 2, Se²⁻; gain, 3, N³⁻; gain, 1, I⁻; lose, 1, Cs⁺; gain, 2, Te²⁻ **13.** Ge **14.** Na **15.** Cs **16.** Cl **17.** Na **18.** Bi **19.** Kr **20.** C **21.** Energy required to remove outermost e-. **22.** Pb **23.** Cs **24.** Mg **25.** Cl **26.** F **27.** The attraction an atom has for the e- of another atom. **28.** Ba **29.** Tl **30.** Ga **31.** c **32.** F **33.** l **34.** t **35.** High melting points.

1. methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane

